Collagen I self-assembly: revealing the developing structures that generate turbidity.
نویسندگان
چکیده
Type I collagen gels are routinely used in biophysical studies and bioengineering applications. The structural and mechanical properties of these fibrillar matrices depend on the conditions under which collagen fibrillogenesis proceeds, and developing a fuller understanding of this process will enhance control over gel properties. Turbidity measurements have long been the method of choice for monitoring developing gels, whereas imaging methods are regularly used to visualize fully developed gels. In this study, turbidity and confocal reflectance microscopy (CRM) were simultaneously employed to track collagen fibrillogenesis and reconcile the information reported by the two techniques, with confocal fluorescence microscopy (CFM) used to supplement information about early events in fibrillogenesis. Time-lapse images of 0.5 mg/ml, 1.0 mg/ml, and 2.0 mg/ml acid-solubilized collagen I gels forming at 27°C, 32°C, and 37°C were collected. It was found that in situ turbidity measured in a scanning transmittance configuration was interchangeable with traditional turbidity measurements using a spectrophotometer. CRM and CFM were employed to reveal the structures responsible for the turbidity that develops during collagen self-assembly. Information from CRM and transmittance images was collapsed into straightforward single variables; total intensity in CRM images tracked turbidity development closely for all collagen gels investigated, and the two techniques were similarly sensitive to fibril number and dimension. Complementary CRM, CFM, and in situ turbidity measurements revealed that fibril and network formation occurred before substantial turbidity was present, and the majority of increasing turbidity during collagen self-assembly was due to increasing fibril thickness.
منابع مشابه
Collagen I Self-Assembly: Revealing the Developing Structures that Generate Turbidity Supporting Material
متن کامل
Assembly of type I collagen fibrils de novo. Between 37 and 41 degrees C the process is limited by micro-unfolding of monomers.
The effects of temperature on the assembly of collagen fibrils were examined in a system in which collagen monomers are generated de novo and in a physiological buffer by specific enzymic cleavage of type I pC-collagen, an intermediate in the normal processing of type I procollagen to type I collagen. Increasing the temperature of the reaction in the range of 29-35 degrees C decreased the turbi...
متن کاملThe effect of nonenzymatic glucosylation on the binding of the main noncollagenous NC1 domain to type IV collagen.
Type IV collagen has the ability to self-assemble by amino end, carboxyl end, and lateral associations to complex network-like structures which can be visualized by rotary shadowing. The main noncollagenous NC1 domain which is located at the carboxyl end of type IV collagen molecules binds to itself to form dimers and also binds along the length of type IV collagen. The latter binding initiates...
متن کاملThe role of the main noncollagenous domain (NC1) in type IV collagen self-assembly
Type IV collagen incubated at elevated temperatures in physiologic buffers self-associates (a) via its carboxy-terminal (NC1) domain, (b) via its amino-terminal (7S) domain, and (c) laterally; and it forms a network. When examined with the technique of rotary shadowing, isolated domain NC1 was found to bind along the length of type IV collagen to four distinct sites located at intervals of appr...
متن کاملInhibition of laminin self-assembly and interaction with type IV collagen by antibodies to the terminal domain of the long arm
Laminin is a major glycoprotein of the basement membrane. Although its precise localization and orientation within this structure is unknown, it is presumably anchored to other macromolecules such as type IV collagen or proteoheparan sulfate. In vitro, laminin has the ability to self-assemble and to bind to type IV collagen molecules at distinct sites. To identify more precisely the domains of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biophysical journal
دوره 106 8 شماره
صفحات -
تاریخ انتشار 2014